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CONTACT PROBLEM IN THE THEORY OF ELASTICITY FOR 

NARROW AREAS, WITH WEAR TAKEN INTO CONSIDERATION 

A. N. Burmistrov UDC 539.3 

i. We examine the spatial steady contact problem for the theory of elasticity in the 
presence of wear. Let a body 1 slide relative to body 2; let there be no wear in this case, 
and let the linear wear j for body 2 be proportional to the work of the force of friction 
[i] 

j -~- K*~lpl , 

where p~ is the pressure; D and K* are the coefficients of friction and proportionality 
between the work of the force of friction and the volume of material removed; s represents 
the friction path. 

Let us choose an affine system of coordinates Oxzylz l, connected to the contact (the 
Oz I axis is perpendicular to the contact and directed toward body i), so that e~, %, e z ex- 
hibits unit length, and the angle between ex and % is equal to ~ (see Fig. I). 

Let the field of the vector for the sliding velocity be uniformly plane-parallel: V = 
-vey, the area of contact Gl = {(xl, Yl): xl- ~ xl ~ xl +, Yl-(Xl) ~ Yl ~ YI+(X~):} [Yz• 
are continuous functions]. The shape of the bodies and of the contact is independent of 
time. This hypothesis is valid, for example, in the following cases: a) 2 represents the 
half space; b) i is the rocking body and 2 is the bearing ring. 

The equation from the theory of elasticity, with wear taken into consideration, has 
the form 

P l (~ r  

o J r (~1' ~1' z l '  Y~) 
GI y 

(1.1) 

17/' 

Y7 rz~ 

Fig. I 

Zhukovskii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 68-76, July-August, 1990. Origdinal article submitted January 9, 1989. 
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Here 0 = 0 1 + 02, O n = (i - Vn2)/(~En), v n and E n are the Poisson coefficient and the modu- 
lus of body elasticity); w i represents the total elastic displacement; r(~l , DI, xl, Yl) 
is the distance between the points $i, NI and x I, Yl; n = 1 (2) corresponds to body 1 (2). 

Let us assume that the characteristic dimension B of the contact along the Oyl axis 
is considerably smaller than the corresponding dimension of L along the Ox I axis. We will 
introduce the small parameter g = B/L and the dimensionless coordinates and variables: x = 
xl/L , ~ = ~i/L, y = yl/B, ~ = ql/B, x • = xlt/L, y• = yi• = K*~/(O sin ~), p = Opi sin ~, 
w = w~/B. Equation (i.i) assumes the form 

' y + ( x )  

y ~ P (~' "q) d~ d~l = w (x, y) -- y y p (x, ~l) dl], 
R s (~ -- x, ,] -- y) 

G y 
-Rs(Ul, /2-2) : [Ul 2 + 2UlU2g COS ~ + ~2U2211/2. 

We will study this equation for the case of a narrow contact region (e + 0). An asymp- 
totic equation was derived in [2] for an arbitrary curvilinear coordinate system as e 
0. In the affine coordinate system it is written in the form 

~+ 

q(~)--q(z),~ x, d~+q(x)]n[ 4(x+-'z)(x:x-)]82sin~13 j =w(x,y)+ 
x - -  

y+(x) y+(x) y+(x) 
+ 2  S P(X'~ l ) ln ly - -~ l]d~l - -Y  S P(X'~l)dq'q(x)= Y p(x ,y )dy .  

y--(x) Y y--(x) 

(1.2) 

When 7 = 0 Eq. (1.2), as demonstrated in [2], is brought to the form of a one-dimensional 
integral equation for q(x). Let us solve the analogous problem for y ~ 0. 

2. Having differentiated (1.2) with respect to y, we obtain 

y+(x) 
S I ow(x, y) p(x, ']) d~l---~-p(x ,  y )= - -~ ,  oy 

y-(x) 
(2.1) 

This singular integral equation for fixed x reduces to the Riemann boundary-value problem 
[3] for a function regular in a plane with a section [y-, y+]: 

y+(x) 
t y p(x,n) dq, O~(z) = ~ ~ - ~  

y--(x) 

The boundary-value problem has the form 

r e2a~ ~ ~ -  wy �9 qp+ __ r p, ( 2 . 2 )  

where ~= arc -~-, 0<~-~; ~ ---- ~y2 + 4a2; qb + ((D-) are the limit values of ~ at the upper 

(lower) edge of the segment [y-, y+]. The solution for problem (2.2) is constructed in 
accordance with familiar methods [3]. As a result we will have 

r (z) = 

y+ 

y [~ )~wyd~;  Q(z) = (z - y+)l-q)(]  - y-)q~; Q• =- - G : ~ I ] Q ( y ) I ;  IQ(y)I = (y+ - y) i -w • Here / ( z ) = ~  - - - -  
y -  

( y - - g - ) % i U s i n g  t h e  s e c o n d  f o r m u l a  in  ( 2 . 2 )  and t h e  S o k h o t s k i i  f o r m u l a s  f o r  I •  we o b t a i n  
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it+ 

p (x, y) 2Ci sin :~(p sin n(p ; [ Q (TI) [ wy dN cos g(p wy. 
=-- Iq (~ ) l  " ~ ] - ' q ~ l  ~--Y ~ ( 2 . 4 )  

it-- 

The quantity C contained in (2.3) and (2.4) is determined from the known load q in the sec- 
tion. Indeed, 

y+ y+ 

q = S p (x, y) dg = ~ ( 0  + (y) -- O-  (y)) dy = 2 a i  Res  [O (z)]. 
y--  y--  

The residue at infinity from the term containing l(z) is equal to zero, while Q(z)~ z as 
z ~ ~, so that~ R es[O(z)] =--2~iC. Thus, C = -q/(2ni). 

The right-hand side in Eq. (1.2) does not depend on y. We will denote it in terms of 
A(x) and introduce the function 

it+(~) 

f (x, y) = - ] p (x, ~) dn. 
Y 

Subtracting by parts the first integral in the right-hand side of (1.2), we have 

y+(x) 

~--Y " 2 ' 
y-(x) 

U(x, y) = w(x, y)-- A (x)-- 2q(x) In  [y - -  y-(x)]. 

Solution of this equation is provided by a formula analogous to (2.4), with substitution 
of Wv(X, y) by U(x, y). However, unlike Eq. (2.1), here it is necessary that we require 
the 5oundedness of F(x, y) on the segment [y-(x), y+(x)], since there must exist q(x). Since 

~=~ [ i!  I~ dn+C'] r176162 
F (x, y) = -- ~a I q (Y) t n - -  y o: 

(2.5) 

(C' is an arbitrary constant) bounded when y = y-, so that the expression in the brackets 
for y = y- must be equal to zero. Thus, 

C'_.~___ ~+ ( Y + - - ~ I - ~ U  (x, ~d~o. \~ -- y-/ 
y-- 

After we have substituted this value into (2.5), we find that the expression in brackets 
is equal to 

y+ 

(Y - Y-) ~ ~ ---2T/ n - 
y- -  

It has to be equated to zero when y = y+ owing to the boundedness of F(x, y). Hence, 

y +  

U (z, n) d,I 
Y "(~+ - '1) ~ (n - ~-)1-~ 

y 

= 0 .  ( 2 . 6 )  
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Using the tabulated integral from [4] 

y+ 

~ -  (Y - -  Y - ) ~ - I  (Y+ - -  y ) - r  dy = sin ~ 

and the expression for U(x, y), from (2.6) we have 

[ y+(x) 

A (x) = ~ J 
[y--(x)  (y+ (x) - -  y)CP (y . - -  y -  (.Z)) 1-r "~ y+(.~) J 

+ 2 q ( x )  ~ L l _n (y - - y - ( x ) )  dy . 
._(~) (,§ (~) - y)~ (, - 7  (~i) ~-~ 

The second term in the brackets, as a result of the substitution y = y-(x) + [y+(x) - y-(x)]t, 
assumes the form 

I 
In t dt 

2q (z) ( i -  t)~ t~-~ 
+ 2q(z) ~ in  [y+ (x) - -  y -  (x)]. 

sin ~r 

Here the integral is equal to [4, p. 502] ~[~(9)--~(i)], where O(x) =--C+(x--1) x 
h=O 

i C is the Euler constant. Using the derived expression for A(x), we can write (k + ~) (~ + ~) ' 

Eq.  (1.2) in final form: 

x+ 

X'-- 

y+(x) 

- 2 r 1 6 2  = ~ 
y-(x) 

~(x+-x)(~-~-) ~ ]_ 
G ~- (xi--~--(zT] ~ 7~ ~ ~ ] 

(2.7) 

,v (x, y) dy 
(y+ (~) - ,)~ (,- y -  (~))~-~" 

Since the intensity of wear is usually not high, 7 is small and, consequently, ~ is 
close to 1/2. Therefore, ~(~)~ ~(I/2) ~ ~'(I/2)(~p -- I/2). Using the formulas [4, p. 774] ,(I/2 + 
z) - ~(i/2 - z) = ~tan~z, ~(i/2) = - C- 21n2, we have ~'(i/2) = n2/2, ~(~)--~(1) = --In4 -I- 
(n~/2)(~- I/2)~--in 4- ?/4. Let us now turn to finding solutions for Eq. (2.7). 

3. Let E + 0. Then from (2.7)' in the main, it follows that 

q (x) 

y+(x) 
sin ~p ~ w (x, y) dy 

l J ( y -  ~ -  (z))~-~ (y+ (x) - y)~" 
In-~- y-(x) 

Thus, given highly elongated contact the load in the section is entirely defined by the 
elastic displacement within that same section (the method of independent plane sections). 
If E is not excessively small, the quantity in i/e 2 is not small and all of the terms in 
Eq. (2.7) should be taken into consideration. We will construct its exact solutions. 

Let us assume that x • = • d(x) = (i/2)(y+(x) - y-(x)) = r - x 2 (in this case L and 
B are equal to half the length and width of contact). The half width of contact depends 
on x in accordance with the law for an ellipse, although the contact need not be elliptical. 
We will denote as follows: y0(x) = (i/2)[y+(x) + y-(x)], g(x, y) = w(x, y + y0(x)). Equa- 
tion (2.7) assumes the form 

I d(~) 

q - -  q (x) d~ + K ' q  (x) - -  ( 3 . 1 )  
z l ~ (y + d (x)) z - ~  (d (x) - -  y)~'  

--i --d(x) 

574 



K '  = In l _ 2~p (q)) + 2 r  ( i ) .  
~ sin S 

In the case of limited wear intensity K'~In _ 16 " } - i "  We will assume that g(x, y) = 
8" sin S 

ao(x) "4-a~(x)y + a2(x)g 2. I n  t h e  f o l l o w i n g  we n e e d  v a l u e s  f o r  t h e  i n t e g r a l s  

d 

= s  
Im (d, q)) _d a ( d - -  x) ~ (d + z) ~-(~' 

d 

.]-r~ (d, y, (p) = y (d -- z)~-~z--Y(d + z) ~' Xm dx, 
- -d  

I g l < d .  

These are found by standard TFKP methods (the calculation is not presented here): 

Im (d, r = sin n~ Ym (q)) d'n, 

7m(q~) = i (--  1) k ( - r  l ) k ( ~ -  m+k)~-~ k! (m -- k)! 
h = 0  

?o(~) ---- t ,  71(~) ---- 2~  - -  1, ?z(~) ---- 2~  z - -  2(p + i ;  

D m + l  (d,  g,  ~), Jm (d, g, (p) = - -  ~ c tg  a T  (g + d)r (d - -  y ) l - ~  gm sin n~ 

Dm (d, g, (~) = ~ P~-~  (~) g~ d'~-~, 
h=D 

s + t)~ (2 - -  r - -  s + k)s_h 
P~ ((P) = ~ (-- t)~-~ (~ - ~ kt (~ - k)! 

h = 0  

9o(@ = t 9~(q)) 2(p i ,  p2(r ---- .q)- - -  2% p3(q~) = 

= (2/3) q~ ( i  - -  q~) ( i  - -  2@.  

In these formulas (a)h ---- a(a -Jr- I) ... (a @ k -- i) is the Pokhhammer symbol [(a) 0 ---- I ]. Having 
introduced the notation Z(x, y) = p(x, y + ye(x)), from (2.4) we obtain 

Z (x, y) sin n~ (g + d ) - r  (d - -  g f f - 1  [ a i J  ~ (d, y, (p) + 2 a J 1  (d, g, (P)I - -  

sin ~ . cos a ~(p (al + 2a2y) + q ----d'-- (y + d)-'~ (d - -  y)~-~ = 

= (y + d ) - ~  (d - -  g)'P-~ q + -~-  [(2(p - -  I)  d + Yl + 

2 a  2 1 
+ -~- i t2 + (2q) - -  1) dg + (2(p 2 - -  2q~) d2]]. 

We will seek the bounded distribution for the pressure. With y = _+d the expression in the 
braces must be equal to zero. Consequently, (2/a = sinr 

2q~da~ + 4d2(pZa. z = - - 2 q ,  2((p - -  t ) d a  x + 4dZ(q) - -  t)2a~ = - - 2 q .  

After we have solved this system, we find that 

z (~,  y) 

a~ = 2(t--2q~) a2d, q = 2q~ ( ( p - - i )  a~ d2; 

2a 2 (x) (Y + d ( x ) ) l - ~  (d (x) - -  g f f ,  p (x, g) = 
05 

_ 2 ~  (~) (y _ y -  (x ) )~-~  (y+  (z)  - y)'~. 
C~ 

( 3 . 2 )  

We will calculate the right-hand side of Eq. (3.1): 

d 
sin ~ep y g (Z, y) dg 

- -d  

= sin n~ [ao i  ~ (d, q$ + a l l  1 (d, q~) + a2I 2 (d, (p)] = 
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= a ~ + ( 2 ~ - - t )  a f l + ( 2 ~  ~ - 2 ~ + t )  azd 2= a o+ ~ - - - ~  q. 

Equation (3,1) assumes the form 

1 

~ q (~) -- q (:~) d~ + Kq (x) = a o (x), K = K'  6r ~ -  6r t 

--1 
( 3 . 3 )  

The derived equation was examined in [2, 5], where its class of pol~omial solutions was 
found. 

Let a0(x) = s + s + s =. Assuming that q(x) = s + s + s =, substituting 
into (3.3), and calculating the integral, we come to equation -3s = + s - 2s + 
K(s 0' + s + s =) = s + s + ~2x =, from which it follows that 

l , ' 1 1 ' t (  1 2 )  (34) 
12 = ~ _ _ "  3 ' l l  = K---~-2, Z0 = - K - t o  K - - S "  

4. Using the results from See. 3, we will solve the problem of the contact between 
two paraboloids. Let the equations 

2 2 
= z~ y~ x~ Y~ (~_x ~ t t t 

2Ry = 2 ~ x  + 2 - ~  > R x  2 .R u 

specify the surface of the first and second bodies in the rectangular system of coordinates 
Oxz'yz'z I (see Fig. i). For the case in which Rx 2, Ry 2 ~ ~ the second body is a half space. 
Given the corresponding selection of the quantities Rxl,2, Ry2,2, the cited equations de- 
scribe the shapes of the sphere and ring surfaces within the bearing. Subsequently, 

t2 ;2 xa Ya 1 1 1 1 t t 
~ = 1 w~ a ~G 2G G R~ ~ '  G G R~ 

5 i s  t h e  t o t a l  e l a s t i c  d i s p l a c e m e n t  a t  t h e  c o o r d i n a t e  o r i g i n .  We w i l l  assume t h a t  R x >> 
R . In  t h i s  c a s e ,  t h e  c o n t a c t  w i l l  be e l o n g a t e d .  S i n c e  x z '  = x l  + y z c o s ~ ,  y z '  = y z / s i n $ ,  
t ~ e n  

A x~ cos g . Y~ R~ = ( c~ ~ sin2 ~ - 1  
W I (xl, gl) 2Rx -'~d XlY~ 2R~' ~ R x -}- " ~ y  } " 

In dimenisonless variables 

Consequently, 

A L 2 ~ L cos ~ B 
X 2 y t  2BR:~ Rx 

ao (x) = w (x, ~0(X)), 
(4.1) a w(x, y0(x))= Lcos~x_ B a 1 (x) = --~ Rx ~ -  Yo (x), a~ (x) = --2Rg" 

S i n c e  t h e  d i s t r i b u t i o n  o f  p r e s s u r e  i s  bounded ,  we have  q ( - 1 )  = q ( l )  = 0. 
O. It follows from the second of the equations in (3.2) that 

Thus ,  ~o' ; - , % 2 '  = qo(1 -q~ )B /R~ .  From ( 3 . 4 )  we f i n d  t h a t  

/2 (3--K),p (1-- ~) B ~ = (K-- t )~(1- -  @ B ( 4 . 2 )  
---- R~ ' R~ 

Using the first of the equations in (4.i) and the fact that a0(x) = ~0 + s x2, we derive 

the equation 

B ~ Lcos~ A ( L~ ) 
2Rt~ yo (x) + ~ Zyo (x) + to - -  "-F + ~ + l~ x ~ = O, 

Then s = s = 
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from which it follows that 

LR e cos 
u. (*) = B R ~  x + V F~ + &~, 

, B~R~ ~ ' 

(4.3) 

Using the first relationship in (3.2) and the second relationship in (4.1)~ we have 

B ( 2 ~ - - I ) ~  1 / 1  - -  x 2. ( 4 . 4 )  ~ ~ F1 + F2x z R e 

S i n c e  2 ~ ' -  1 < 0 ,  t h e n  i n  ( 4 . 3 )  a n d  i n  ( 4 . 4 )  we h a v e  t o  c h o o s e  t h e  u p p e r  s i g n .  S u b s e q u e n t l y ,  
as we can see from (4.4), F 1 = -F 2 = (i - 2~) 2. Using expression (4.3) for F1and F2 and 
expression (4.2) for s and s after transformation we obtain 

(2ReA ~1/2 Rg i - -  V ~  - -  4~182 CO82 ~ ' ( 4 . 5 )  

B = \ - ~ o  ] ' R - 7 =  2cos 2~ ' 

w h e r e  k 0 = ( t - - 2 @  2 q - 2 ( K - l ) ~ ( l  - -  ~), k 1 = ( i - - 2 ~ )  2 + 2 ( K - - 3 ) T ( t  - -  ~). U s i n g  t h e  d e t e r m i n a t i o n  
o f  t h e  q u a n t i t y  R$,  we f i n d  

By _ t - -  ~ t - - 4 k i ~  "~cos 2 
- -  _ tg2~ (4.6) 
R~ 1 + I/i -- 4k/"  cos ~ 

L e t  u s  d r a w  a n u m b e r  o f  c o n c l u s i o n s .  The  h a l f  w i d t h  o f  t h e  c o n t a c t  d e p e n d s  on  x i n  
accordance with the law for an ellipse. The mean line and the "boundaries" of contact are 
given by the formulas 

Yo (x) = R~ cos ~ R ~  x + ( l  - 2r  K i  - z 2, y§  (x) = 

R e cos ~ R~ cos 
eR---Tx+(2--2(~)Vi--x=,  y - ( x ) = - -  eR~ x - - 2 ( p V i - - x Z  

and represent the arcs of ellipses contained between tangents parallel to the velocity of 
slippage, while the first term in these formulas defines the straight line connecting the 
points of tangency. The quantity g is found from the transcendental equation (4.6). From 
formula (4.5), with h given, we derive the maximum half width of contact B and L = B/s. 

Let us determine the normal force P, the components of the tangential force Tx, Ty, 
and the components of the moment Mx, My (on the Oxl' , Oy z' axes), acting on body 1 and 
governed by the distribution of pressure, denoting in terms of G I' the area of contact in 
coordinates x~', y~'" 

1 

sv P -= p, dx'l dy; = sin ~ Pl dxl dYl = -~" f q (x) dx 
GI GI --I 

4 9 (i - -  9) LBZ 
30R e 

Then 

\4(p(i_~)e~/ , B =  \4~(I--~) 

Let us find T x and Ty. Let the equation zl = X(x~', Yl') specify the surface of the 
deformed body i. With accuracy to an inconsequential additive constant 

t 2  ~2 

, xl !_* %s (~1  a ) ,  s (xl,  ~i) x ( ~ , ,  y'0 = ~ + 2R~ + ' ' ' = 
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' Oy z ' Projections onto the Ox z , 
formulas 

+ 
G1 

axes of the unit normal to the surface are defined by the 

o% o% n x ~--- 
Ox,1 , r~y ,, Oy I 

while the components of the tangential force 

S f  ' ' CC- % , , T~: = - -  Pl _:v dxa dyl, Tu = - -  dx 1 dy z. 
Ox 1 ,) J l~l-~y' 1 

G1 G 1 

These expressions will include the following terms: 

as dx' ' aS dx I dye. A~: = Pa -"v 1 @1, Ay = Pl Oy"v 
, Ox 1 

G 1 G 1 

We will demonstrate that they are equal to zero. Indeed, 

v v r t ! v 
Pl --7 a x l  CtYz = - -  P l (Xl ,  Yl ')  [" C C pl (~1,1]1) (Xl - ,~1 )  dt~.l dl]l 1 d x  1 d y l .  

az 1 [ (~1- -  ~'1)2 + ( y l - -  ~ l ) ' ] s l ' J  
G 1 G1 

Changing the order of integration over x z , Yz and ~i', qz , we obtain an expression differ- 
ent from the right-hand side of the last equation only in terms of sign. Consequently, 
A x = 0. Analogously, Ay = 0. Let us note that the proved equations are, essentially, a 
consequence of Newton's third law (tangential forces acting on a body are equal in absolute 
value and oppositely directed). Using that which has been proved, we obtain 

Tx = --.dj,  Rxx p l  (X,, Y'I) dxzdyl  OR~ 

G1 
1 y+(x) 

--  0R ~ -  cos ~ dx yp dy. 
- - i  y--(x) 

The internal integral 

a(x) 
S Z (x, y ) (y  + Yo (x)) dy = Yo (x) q (x) - -  2a~ (~! J2 (d(x),  O, t - -  ~) = 

--~(x) 

= Yo (x) q (x) -t- R-~ (1 - -  x2) a/2 (p ( i  - -  q03(l - -  2(p).. 

Utilizing the equation 

S [ LR~c~ Yo (x) q (x) dx = (p (1 --  r B (1 - -  x ~) + R~ BR x 
--1 --1 

+ (1 - -  2q~) l~rl----- x 2] dx ---- 3n~ (t --8Rfi q)) (i - -  2q)) B, 
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we obtain �9 T x = - - - -  

LB ~ 1 
- -  0R--~ s in  ~ y dx, 

- - 1  

: r 1 6 2  y'~ , , , , 
OR~ LBa cos.g ncp(i-(p)(I-2cp)2R~ , and this is followed by T u = - - j j - ~ - ( p x \ x l ,  g'l) d x l d y l = ,  

G 1 

y+(x) 
y LB 3 (l - -  (p) (l - -  2(p) 

v-(x) pg dg = - -  0R--~ s in  ~ n(p 2R~ " 

The orthogonal projection of the tangential force onto the vector V (the force of resistance) 

LB 3 /cos ~ ~ siI~ 2 ~ \  
Tr = - -  T~ cos  ~ - -  T v s in  ~ = ~q~ ( l  - -  q~) ( t  - -  2(p) ~ ~ / ~  + -'g'i-/~ ) ' 

while the projection onto the vector IV, e z] (the side force) 

T l = ~ o  (t  - -  r (1 - -  2qo) s in  ~ cos ~. ~ ~ B~ " (4.7) 

As we can see from (4.7), the side force acting on body i, when i/Ry I > I/Rx I (i/RyI < I/Rxl) 
is directed in that direction away from the vector V-,in which the angle between V and Ox l 
is acute (obtuse). When B = ~/2 or Rx I = Ry i (this equality is satisfied, for example, 
in the contact of a sphere with the ring of the bearing) the side force is equal to zero. 
If there is no wear (~ = 1/2), so that T r = Ts = 0. 

Let us now turn to the calculation of the moments: 

ss i M x  = Pl l dx~ @ l  = 0 J j py l  dxl @ 1 - -  0 dx pg dy. 

G1 G --1 y--(x) 

The internal integral has already been calculated in the determination of Tx, so that 

~LB 3 . ,~ (4.8) 

Further, 

ff r 
MY = - -  PlXl dxl  dYx --  0 P1 (xl + Yl cos 8) dxl  dgl = 

c~ ~ 

= - -  --6- p z  dx dy + --E cos ~ py  dx dy . 

The first term in the brackets is equal to zero and, therefore, 

M y  = - - M ~  ctg  ~ = T~Bx ~. ( 4 . 9 )  

As we can see from formulas (4.8) and (4.9), the moment is orthogonal to the sliding velo- 
city and leads to the reversal of body i, while its modulus 

LB 3 M = V'M~ + M~ = ~ ~ ( i  - ~) (t - 2~).  

If there is no wear, the moment is equal to zero. The center of pressure is found on the 
positive Oy I half axis at a distance 3B(I - 2T)/8 from point O. 

The problem examined at this point generalized the Hertz problem to the case of narrow 
contact in the presence of wear. 
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WAVEGUIDE EFFECT IN A ONE-DIMENSIONAL PERIODICALLY PENETRABLE STRUCTURE 

S. V. Sukhinin UDC 517.947+534.2+535.42 

The waveguide properties of permeable one-dimensional periodic acoustic structures 
are studied here. These waveguide properties are associated with the existence of intrinsic 
waves localized in the vicinity of the structure. Their properties are described by general- 
ized eigenfunctions which are solutions of problems describing the steady oscillations about 
the structure. The possibility of the existence of generalized eigenfunctions localized 
in the vicinity of a one-dimensional periodic penetrable layer or about a periodic chain 
of permeable barriers is demonstrated in this study. Examples are presented of the wave- 
guide permeable periodic structures for which the boundaries asymptotic with respect to 
limited permeability or with respect to special geometric shape are studied, and also 
the properties of the natural oscillations, and eigenvalues are determined. These examples 
may serve as models both for experimental and numerical studies into the waveguide properties 
of a periodically permeable structure. 

I. Formulation of the Problems and Necessary Information. Let a space be filled with 
a medium in which the speed of sound is represented by c 2 and the density in a state of 
rest is represented by p=. The medium contains either a one-dimensional periodic layer 
(Fig. la) or a string of inclusions (Fig. ib) of another medium, where the speed of sound 
is c I, and the density in a state of rest is Pl. It is assumed that the boundary between 
these media is periodic along the y axis, with a period of 2~. It is assumed, further, 
that all motion within the media depends exclusively on two spatial variables: x, y. It 
is therefore convenient to utilize the following notation: ~i is the area on the (x, y) 
plane which simulates the layer or chain of inclusions, while ~2 models the area filled 
with the external medium, and r represents the boundary between these media (see Fig. i). 

Let f(x, y) exp (-iwt) describe the periodic sources of the sound. It is assumed that 
the sources are situated in the medium ~2, positioned periodically along the y axis with 
a period 2~, w is the angular frequency of the oscillations. The sound waves are described 

~' /_  / 1  ~ P 1  ~ jol , 01 

Fig. i 
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